168
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Exhaust manifold design with tapered pipes using divided range MOGA

, &
Pages 149-163 | Published online: 12 May 2010
 

Abstract

A multiobjective design optimization system of exhaust manifold shapes with tapered pipes for a car engine has been developed by using divided range multiobjective genetic algorithm (DRMOGA) to obtain more engine power as well as to produce less pollutant. Although the present design problem is known to be highly non-linear, the exhaust manifold has been successfully designed to improve both objectives. A comparison of the results obtained by DRMOGA and MOGA was performed and DRMOGA was demonstrated to find better solutions than MOGA.

Acknowledgements

The authors would like to thank Powertrain Research Laboratory in Mazda Motor Corporation for providing the one-dimensional empirical engine cycle simulation code and the engine data. The calculations were performed by using the supercomputer, ORIGIN 2000 in the Institute of Fluid Science, Tohoku University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,161.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.