167
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

A multi-objective metamodel-assisted memetic algorithm with strength-based local refinement

&
Pages 909-923 | Received 30 Sep 2008, Published online: 18 Sep 2009
 

Abstract

Metamodel-assisted evolutionary algorithms are low-cost optimization methods for CPU-demanding problems. Memetic algorithms combine global and local search methods, aiming at improving the quality of promising solutions. This article proposes a metamodel-assisted memetic algorithm which combines and extends the capabilities of the aforementioned techniques. Herein, metamodels undertake a dual role: they perform a low-cost pre-evaluation of population members during the global search and the gradient-based refinement of promising solutions. This reduces significantly the number of calls to the evaluation tool and overcomes the need for computing the objective function gradients. In multi-objective problems, the selection of individuals for refinement is based on domination and distance criteria. During refinement, a scalar strength function is maximized and this proves to be beneficial in constrained optimization. The proposed metamodel-assisted memetic algorithm employs principles of Lamarckian learning and is demonstrated on mathematical and engineering applications.

Acknowledgements

This work was co–funded by the PENED03 program (Measure 8.3 of the Operational Program Competitiveness, of which 80% is European Commission and 20% national funding), under project number 03ED111.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,161.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.