395
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Modification of DIRECT for high-dimensional design problems

, , , &
Pages 810-823 | Received 23 Nov 2012, Accepted 01 Apr 2013, Published online: 19 Jun 2013
 

Abstract

DIviding RECTangles (DIRECT), as a well-known derivative-free global optimization method, has been found to be effective and efficient for low-dimensional problems. When facing high-dimensional black-box problems, however, DIRECT's performance deteriorates. This work proposes a series of modifications to DIRECT for high-dimensional problems (dimensionality d>10). The principal idea is to increase the convergence speed by breaking its single initialization-to-convergence approach into several more intricate steps. Specifically, starting with the entire feasible area, the search domain will shrink gradually and adaptively to the region enclosing the potential optimum. Several stopping criteria have been introduced to avoid premature convergence. A diversification subroutine has also been developed to prevent the algorithm from being trapped in local minima. The proposed approach is benchmarked using nine standard high-dimensional test functions and one black-box engineering problem. All these tests show a significant efficiency improvement over the original DIRECT for high-dimensional design problems.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,161.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.