170
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Adsorptive removal of bis(2-ethylhexyl) phthalate using an imprinted polymer: isotherm and kinetic modelling

ORCID Icon, ORCID Icon & ORCID Icon
Pages 5516-5527 | Received 02 Jun 2020, Accepted 10 Jul 2020, Published online: 10 Aug 2020
 

ABSTRACT

An adsorbent material specifically designed to capture bis(2-ethylhexyl) phthalate (DEHP) was successfully prepared by molecular imprinting technology. The molecularly imprinted polymer (MIP) was fabricated using methacrylic acid as a functional monomer and was crosslinked by ethylene glycol dimethacrylate via a bulk polymerisation method. The corresponding nonimprinted polymer (NIP) was synthesised as a control sample. The polymers were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, and porosity analysis by N2 adsorption–desorption. The binding performances of the MIP and NIP were evaluated through rebinding of DEHP in prepared solutions. The experiment was conducted by quantifying the amount of unbound template via the kinetic spectrophotometric method performed with a UV–Vis spectrophotometer. The effects of the initial concentration of the template and the adsorption time were revealed through an adsorption isotherm study. The obtained MIP showed a greater efficiency towards the removal of DEHP from solution (92%) than the NIP (34%). Therefore, the MIP exhibited preferential adsorption of DEHP molecules. The adsorption isotherm experiments showed good linearity and higher correlation coefficients for the Freundlich isotherm model than for the Langmuir model, and the pseudo-second-order equation provided the best fit describing the kinetic sorption behaviour of the polymers. Under optimised conditions, the MIP exhibited high selectivity towards DEHP over a competitive molecule; in addition, good recovery was achieved, resulting in a high distribution coefficient.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Talent and Publication Enhancement Research Grant (TAPE-RG Vote No. 55113).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.