388
Views
18
CrossRef citations to date
0
Altmetric
Articles

Recursive state estimation for discrete time-varying stochastic nonlinear systems with randomly occurring deception attacks

, , &
Pages 548-560 | Received 01 Mar 2015, Accepted 13 Jun 2015, Published online: 27 Apr 2016
 

Abstract

This paper is concerned with the state estimation problem for a class of discrete time-varying stochastic nonlinear systems with randomly occurring deception attacks. The stochastic nonlinearity described by statistical means which covers several classes of well-studied nonlinearities as special cases is taken into discussion. The randomly occurring deception attacks are modelled by a set of random variables obeying Bernoulli distributions with given probabilities. The purpose of the addressed state estimation problem is to design an estimator with hope to minimize the upper bound for estimation error covariance at each sampling instant. Such an upper bound is minimized by properly designing the estimator gain. The proposed estimation scheme in the form of two Riccati-like difference equations is of a recursive form. Finally, a simulation example is exploited to demonstrate the effectiveness of the proposed scheme.

Notes

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 949.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.