14
Views
1
CrossRef citations to date
0
Altmetric
Original

Wavelet based compression of medical ultrasound images using vector quantization

, &
Pages 128-133 | Published online: 09 Jul 2009
 

Abstract

In this paper, an efficient technique for compression of medical ultrasound (US) images is proposed. The technique is based on wavelet transform of the original image combined with vector quantization (VQ) of high-energy subbands using the LBG algorithm. First, we analyse the statistical behaviour of wavelet coefficients in US images across various subbands and scales. The analysis show that most of the image energy is concentrated in one of the detail subband, either in the vertical detail subband (most of the time) or in the horizontal subband. The other two subbands at each decomposition level contribute negligibly to the total image energy. Then, by exploiting this statistical analysis, a low-complexity image coder is designed, which applies VQ only to the highest energy subband while discarding the other detail subbands at each level of decomposition. The coder is tested on a series of abdominal and uterus greyscale US images. The experimental results indicate that the proposed method clearly outperforms the JPEG2000 (Joint Photographers Expert Group) encoder both qualitatively and quantitatively. For example, without using any entropy coder, the proposed method yields a peak signal to noise ratio gain of 0.2 dB to 1.2 dB over JPEG2000 on medical US images.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 706.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.