230
Views
22
CrossRef citations to date
0
Altmetric
Original

Effect of coating thickness and its material on the stress distribution for dental implants

Pages 280-287 | Published online: 09 Jul 2009
 

Abstract

Dental implants have been increasingly used to recover the masticatory function of lost teeth. It has been well known that the success of a dental implant is heavily dependent on initial stability and long-term osseointegration due to optimal stress distribution in the surrounding bones by the concept implant surface coating. Hydroxyapatite (HAP), as a coating material, has been widely used in dentistry due to its biocompatibility. Some investigations show a benefit of coating dental implants with HAP, and others concluded that HAP coating reduces the long-term implant survival. Therefore, the aim of this investigation is to design a new functionally graded dental implant coating, as well as studying the effect of coating thickness on the maximum von Mises stresses in bone adjacent to the coating layer. The gradation of the elastic modulus is changed along the longitudinal direction. Stress analysis using a finite element method showed that using a coating thickness of 150 µm, functionally graded from titanium at the apex to the collagen at the root, will successfully reduce the maximum von Mises stress in bone by 19% and 17% compared to collagen and HAP coating respectively.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 706.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.