81
Views
4
CrossRef citations to date
0
Altmetric
Articles

Prediction of forced expiratory volume in normal and restrictive respiratory functions using spirometry and self-organizing map

&
Pages 538-543 | Published online: 15 Sep 2009
 

Abstract

This work presents a prediction of forced expiratory volume in pulmonary function testing, using spirometry and neural networks. The pulmonary function data were recorded (n = 110) from volunteers using flow–volume spirometer with a standard acquisition protocol. From the recorded flow–volume curves, the acquired data are then used to predict forced expiratory volume in one second (FEV1) using a self-organizing map (SOM) and radial basis function neural networks. The SOM is used to determine the cluster centres of the hidden layer of radial basis function neural networks. The optimal widths of the Gaussian function of radial basis function neural networks were obtained from these centres and this network is then used to predict FEV1. The performance of the neural network model was evaluated by computing their prediction error statistics of average value, standard deviation, root mean square and their correlation with the true data for normal and abnormal cases. The correlation between measured and predicted values of FEV1 for normal subjects was found to be 0.9. The prediction error for normal subjects is lower than that of restrictive subjects. Results show that the adopted neural networks are capable of predicting FEV1 in both normal and abnormal cases.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 706.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.