260
Views
12
CrossRef citations to date
0
Altmetric
Articles

Molecular diversity of native Trichoderma isolates against Fusarium oxysporum f. sp. lycopersici (Sacc.). A casual agent of Fusarium wilt in tomato (Lycopersicon esculentum Mill.)

, , , , &
Pages 686-698 | Received 12 Apr 2011, Published online: 10 Aug 2011
 

Abstract

Fusarium wilt in tomato caused by Fusarium oxysporum is the one of the problematic diseases. In this study, 12 native Trichoderma isolates were isolated from different land use types in Rayalaseema region of Andhrapradesh, India and were tested for antagonistic activity against F. oxysporum using dual culture method; the maximum inhibition occurred in WT2 (78.4%) compared to the control. Molecular characterisation using random amplified polymorphic DNA (RAPD) technique reported 91.8% polymorphism among 12 isolates of Trichoderma. Internal transcribed spacer (ITS) region of rDNA amplification with genus-specific ITS1 and ITS4 universal primers produced amplicon size from 569 bp in all the isolates. The study resulted in identification of good competitive Trichoderma isolates against F. oxysporum. A relationship was found between the polymorphism showed by the Trichoderma isolates and their hardness to F. oxysporum during antagonism. Also, exhibition of sufficient genetic polymorphism aids further exploitation in genomic fingerprinting.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 471.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.