Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 4
313
Views
20
CrossRef citations to date
0
Altmetric
Articles

Sorption of carbendazim and linuron from aqueous solutions with activated carbon produced from spent coffee grounds: Equilibrium, kinetic and thermodynamic approach

, &
Pages 226-236 | Published online: 11 Jan 2019
 

Abstract

Spent coffee grounds (SCG) have been used for the production of activated carbon (AC) by impregnation with different ratios of phosphoric acid at 600 °C, Xp (H3PO4/coffee): 3:130%, 4:130%, 3:150% and 4:150%. The obtained AC was characterized by BET, FTIR and SEM. BET surface area corresponds to 803.422 m2 g−1. The influences of the main parameters such as contact time, the pesticides initial concentration, adsorbent dose, pH and temperature on the efficiency of separation process were investigated during the batch operational mode. Results were modeled by adsorption isotherms: Langmuir, Freundlich and Temkin isotherms, which gave satisfactory correlation coefficients. The maximum adsorption capacities calculated from the Langmuir isotherms were 11.918 mg g−1 for carbendazim and 5.834 mg g−1 for linuron at room temperature. Adsorption kinetics of carbendazim and linuron have been studied by the pseudo-first-order, the pseudo-second-order and the intraparticle diffusion model. The results of adsorption kinetics have been fitted the best by pseudo-second-order model. The resulted data from FTIR characterization pointed to the presence of many functional groups on the AC surface. SCG adsorbent, as an eco-friendly and low-cost material, showed high potential for the removal of carbendazim and linuron from aqueous solutions.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Authors would like to thank Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support (Project No. III46009). Ali Mohammed Hgeig would like to thank the Ministry of Higher Education in Libya for his PhD grant supporting this research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 711.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.