84
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Synthesize and Crystallization Kinetics of Biodegradable Aliphatic Poly(Butylene Succinate-Co-Diethylene Glycol)

, , &
Pages 794-801 | Published online: 22 Jul 2009
 

Abstract

Biodegradable aliphatic poly(butylene succinate-co-diethylene succinate) (PBDEGS) were synthesized from succinic acid and diethylene glycol through a two step polycondensation with titanium tetraisoproxide (TTP) as catalyzer and polyphosphate (PPA) as the stablilizer at high temperature. The differential scanning calorimeter (DSC) was used to investigate the melting behavior, crystallization behavior and non-isothermal crystallization kinetics of this copolyester. The melting behavior showed that the melting temperature of the copolyester decreased gradually with increaseing of diethylene glycol in the copolyester. The crystallization mechanism of PBDEGSs were analyzed with the Avrami equation. The result showed that the DEG chains affected the crystallization mechanism of PBS and decreased overall crystallization rate in some extent. The contrastive method of Mo analysis showed similar rasult. At the same time, because of the flexible ether bond existed in the DEG molecules, the crystallization activation energy of PBDEGSs is obviously lower than that of PBS.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 687.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.