140
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Nonisothermal Crystallization and Melting Behaviors of PP/PA6/TiO2 Nanocomposites

, &
Pages 506-525 | Published online: 20 Oct 2016
 

ABSTRACT

Titanium dioxide nanoparticles were functionalized with toluene-2,4-diisocyanate and then polypropylene/polyamide 6 blends containing functionalized titanium dioxide were prepared using a twin-screw extruder. The nonisothermal crystallization and melting behaviors of the as-prepared nanocomposites were investigated using differential scanning calorimetry. The nonisothermal crystallization differential scanning calorimetry data were analyzed by the modified-Avrami (Jeziorny) and combination of Ozawa and Avrami (Mo) methods. It can be found that the Jeziorny method can be used to describe the main crystallization process, and the Mo method can better deal with nonisothermal crystallization kinetics of the polypropylene and polyamide 6 phase in polypropylene/polyamide 6-based nanocomposites. The nonisothermal crystallization analysis shows that the titanium dioxide nanoparticles have two effects on polypropylene/polyamide 6 blends, i.e., it can favor the improvement of crystallization ability and decrease the crystallization rate of the polypropylene and polyamide 6 phase in polypropylene/polyamide 6-based nanocomposites. For one thing, the functionalized titanium dioxide nanoparticles in the polypropylene/polyamide 6-based nanocomposites act as effective nucleation agents and result in higher crystallization temperature (T0) than that of the polypropylene and polyamide 6 in pure polypropylene/polyamide 6 blends, which indicated titanium dioxide nanoparticles favor the improvement of crystallization ability of the polypropylene and polyamide 6 phase. For another, the existence of functionalized titanium dioxide nanoparticles hinders the free movement of polymer chains and results in lower crystallinity than that of the polypropylene and polyamide 6 in pure polypropylene/polyamide 6 blends, which indicated titanium dioxide nanoparticles decrease the crystallization rate of the polypropylene and polyamide 6 phase in polypropylene/polyamide 6-based nanocomposites. The nonisothermal crystallization melting behaviors show that there is single or double melting peak, which varies with different cooling rates for the polyamide 6 phase in polypropylene/polyamide 6-based nanocomposites. Multiple melting peak is mainly caused by the different crystalline structure of the polyamide 6 phase, the melting peak I is mainly caused by γ crystal of the polyamide 6 phase, while the melting peak II corresponds to the thermodynamic stability of α crystal. Besides, the recrystallization of the polyamide 6 phase in the heating process, and the effect of the incorporation of the titanium dioxide nanoparticles may have some contributions to the appeared multiple melting peak of the polyamide 6 phase in the polypropylene/polyamide 6-based nanocomposites.

GRAPHICAL ABSTRACT

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 687.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.