253
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Penalized and Shrinkage Estimation in the Cox Proportional Hazards Model

&
Pages 1026-1040 | Received 27 Nov 2012, Accepted 11 Jul 2013, Published online: 10 Feb 2014
 

Abstract

This article considers the shrinkage estimation procedure in the Cox's proportional hazards regression model when it is suspected that some of the parameters may be restricted to a subspace. We have developed the statistical properties of the shrinkage estimators including asymptotic distributional biases and risks. The shrinkage estimators have much higher relative efficiency than the classical estimator, furthermore, we consider two penalty estimators—the LASSO and adaptive LASSO—and compare their relative performance with that of the shrinkage estimators numerically. A Monte Carlo simulation experiment is conducted for different combinations of irrelevant predictors and the performance of each estimator is evaluated in terms of simulated mean squared error. Simulation study shows that the shrinkage estimators are comparable to the penalty estimators when the number of irrelevant predictors in the model is relatively large. The shrinkage and penalty methods are applied to two real data sets to illustrate the usefulness of the procedures in practice.

Mathematics Subject Classification:

Acknowledgments

We would like to thank all the referees, the Editor, and the Associate Editor for their valuable suggestions on the revision of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,069.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.