529
Views
74
CrossRef citations to date
0
Altmetric
Research Article

Miscibility Behavior and Formation Mechanism of Stabilized Felodipine-Polyvinylpyrrolidone Amorphous Solid Dispersions

, , &
Pages 473-489 | Published online: 26 Sep 2008
 

Abstract

In the present study, solid dispersion systems of felodipine (FEL) with polyvinylpyrrolidone (PVP) were developed, in order to enhance solid state stability and release kinetics. The prepared systems were characterized by using Differential Scanning Calorimetry, X-Ray Diffraction, and Scanning Electron Microscopy techniques, while the interactions which take place were identified by using Fourier Transformation-Infrared Spectroscopy. Due to the formation of hydrogen bonds between the carbonyl group of PVP and the amino groups of FEL, transition of FEL from crystalline to amorphous state was achieved. The dispersion of FEL was found to be in nano-scale particle sizes and dependent on the FEL/PVP ratio. This modification leads to partial miscibility of the two components, as it was verified by DSC and optimal glass dispersion of FEL into the polymer matrix since no crystalline structure was detected with XRD. The above deformation has a significant effect on the dissolution enhancement and the release kinetics of FEL, as it causes the pattern to change from linear to logarithmic. An impressive optimization of the dissolution profile is observed corresponding to a rapid release of FEL in the system containing 10% w/w of FEL, releasing 100% in approximately 20 min. The particle size of dispersed FEL into PVP matrix could be classified as the main parameter affecting dissolution optimization. The mechanism of such enhancement consists of the lower energy required for the dissolution due to the amorphous transition and the fine dispersion, which leads to an optimal contact surface of the drug substance with the dissolution media. The prepared systems are stable during storage at 40 ± 1°C and relative humidity of 75 ± 5%. Addition of sodium docusate as surfactant does not affect the release kinetics, but only the initial burst due to its effect on the surface tension and wettability of the systems.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.