200
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Preparation and In Vitro Evaluation of pH, Time-Based and Enzyme-Degradable Pellets for Colonic Drug Delivery

, , , , &
Pages 999-1007 | Published online: 26 Sep 2008
 

Abstract

The preparation of pH-dependent, time-based and enzyme degradable pellets was investigated for use as an oral colonic drug delivery system. It was expected that drug would be released immediately once the pellets reached the colon. The pellets were prepared using extrusion-spheronizing equipment and subsequently coated with three layers of three functional polymers by an air-suspension technique. The core consisted of 5-aminosalicylic acid (5-ASA) as a model drug, CaP as an enzyme-degradable material and microcrystalline cellulose (MCC) as an additive. As far as the three coated layers were concerned, the outer layer was coated with Eudragit L30D-55 for protection against gastrointestinal juices, the intermediate layer was coated with ethylcellulose (EC) to inhibit drug release during passage through the small intestine, and the inner film was coated with pectin for swelling and enzyme-degradation, which required a 30, 10, and 12% weight gain, respectively. Several micromeritic properties of the core pellets, including particle size distribution, particle size, degree of circularity, and friability, were evaluated to investigate the effects of the formulations of the cores and preparation conditions. Also, dissolution testing of the cores showed that the presence of calcium pectinate (CaP) markedly increased the drug release rate from the cores, as determined by scanning electron microscopy (SEM). In-vitro release studies indicated that the coated pellets completely protected the drug release in 0.1 mol/L HCl, while the drug release was delayed for 3–4 hr in pH 6.8 PBS. A synergistic effect of enzyme dependence for the coated pellets was seen following removal of the coated layer and during contact with colonic enzymes. Consequently, it was possible to achieve colon-specific drug delivery using this triple-dependence system.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.