176
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Preparation of benznidazole pellets for immediate drug delivery using the extrusion spheronization technique

, , , , &
Pages 762-769 | Received 12 Apr 2016, Accepted 06 Jul 2016, Published online: 18 Aug 2016
 

Abstract

Recent advances in the treatment of Chagas disease have followed combinations of drugs that act synergistically against infection, predominantly including benznidazole (BNZ) and azoles derivatives. Possible incompatibilities between these drugs, slow dissolution of BNZ and dose adjustment difficulties are technological obstacles to the development of multidrug formulations. Thus, in the present study, BNZ pellets were developed using extrusion spheronization for immediate drug delivery. Preformulation studies were then performed using thermal analysis and infrared spectroscopy and compatibility between the drug and selected excipients (polyethylene glycol 6000, sodium starch glycolate, microcrystalline cellulose and sodium croscarmellose) was investigated. No chemical decomposition of BNZ was observed, even in samples submitted to wet granulation and thermal stress. Subsequently, formulations were elaborated according to a simplex lattice experimental design using polyethylene glycol, sodium starch glycolate and sodium croscarmellose as disintegrating agents. In these experiments, BNZ pellets showed appropriate physicochemical characteristics, including high drug load capacity and excellent flow properties. The mixture experimental design allowed identification of adequate compositions of disintegrating agents and achieved rapid disintegration and dissolution of pellets. Optimum performance was achieved using polyethylene glycol and sodium croscarmellose at 5.0% w/w each. The present BNZ pellets are versatile alternatives to treat Chagas disease and provide insights into the preparation of multidrug systems.

Acknowledgements

The authors would also like to thank the Laboratory of Electronic Microscopy from the University of Brasília.

Disclosure statement

The authors report no declarations of interest.

Funding

This work was financially supported by CNPq/Brazil (project 477908/2013-6) and FAPDF (process number 0193.001023/2015).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.