422
Views
17
CrossRef citations to date
0
Altmetric
Research Articles

Effect of gamma sterilization on the properties of microneedle array transdermal patch system

, , , , , , & show all
Pages 606-620 | Received 15 Oct 2019, Accepted 24 Feb 2020, Published online: 03 Apr 2020
 

Abstract

Soluble microneedles (MNs) of four different hydrophilic polymers namely sodium carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP) K30, PVP K90 and sodium hyaluronate (HU) were fabricated by mold casting technique. When exposed to gamma radiation, a dose of 25 kilogray (kGy) was found to render the microneedle (MN) sterile. However, CMC was found to form MNs with poor mechanical properties, whereas PVP K30 MNs were drastically deformed upon exposure to applied dose as observed in bright field microscopy. Scanning electron microscopy (SEM) revealed that morphology of PVP K90 and HU MNs were not significantly affected at the applied dose. The appearances of characteristic peaks of irradiated MNs of PVP K90 and HU in Fourier-transform infrared spectra suggested structural integrity of the polymers on irradiation. Differential scanning calorimetry (DSC) indicated gamma irradiation failed to alter the glass transition temperature and thus mechanical properties of PVP K90 MNs. However, DSC and Powder X-ray Diffraction (PXRD) conclusively indicated that the degree in crystallinity of HU was substantially reduced on irradiation. In vitro dissolution profiles of sterile PVP K90 and HU MNs were similar to un-irradiated MNs with a similarity factor (f2) of 64 and 54, respectively. In vivo dissolution studies in human subjects indicated that sterile MNs of PVP K90 and HU exhibited dissolution of 78.45 ± 1.09 and 78.57 ± 0.70%, respectively, after 20 min. The studies suggested that PVP K90 and HU could be suitable polymers to fabricate soluble MNs as the structural, morphological, microstructural and dissolution properties remained unaltered post γ sterilization.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

The authors acknowledge the funding support from Board of Research in Nuclear Sciences [research grant # 35/14/11/2015-BRNS/3086], Department of Atomic Energy (DAE), and Government of India.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.