135
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigation of mixing homogeneity of binary particle systems in high-shear wet granulator by DEM

, , , , , , , , & show all
Pages 179-188 | Received 30 Sep 2022, Accepted 10 Feb 2023, Published online: 03 Apr 2023
 

Abstract

To provide a theoretical foundation and a good understanding for the real manufacturing granulation process, this paper investigates the effect of particle properties on the mixing process in the high-shear wet granulator, a common equipment in one of the key technologies in the growth of the pharmaceutical industry that has rarely been used to examine particle mixing-related problems in previous numerical simulations. The discrete element method (DEM) and the relative standard deviation (RSD) to explore binary particle systems with a range of sizes, densities, and volume fractions, and measure the mixing homogeneity of the particles. Results show that, for binary particle systems, particle size, density, and volume fraction all significantly affect mixing homogeneity, with good mixing occurring for a single size and a 1:1 volume fraction for the same density. Similar Brazil nut effect and Reverse-Brazil nut effect occurrences were discovered for many particle systems at various stages. There is a size threshold for a given binary particle system. Then, in a binary system, particles of a single size and density had nearly similar vertical driving forces, and these forces may vary by up to 10 times with changes in size or density. In the end, granular temperature rises with radial position and reaches its highest point at the pelletizer’s wall and the top of the impeller. Density has less of an impact on granule velocity fluctuation than size.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was funded by National Science and Technology Major New Drug Creation Special Project (2017ZX09101001006), Chongqing Technology Innovation and Application Development Special Project (cstc2020jscx-msxmX0048).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.