231
Views
15
CrossRef citations to date
0
Altmetric
Articles

Improvement of wheat and maize crops by inoculating Aspergillus spp. in alkaline soil fertilized with rock phosphate

&
Pages 535-546 | Received 20 Aug 2010, Accepted 07 Oct 2010, Published online: 18 Jul 2011
 

Abstract

Aspergillus tubingensis and A. niger were isolated from the landfills of rock phosphate mines and tested for their efficacy to solubilize rock phosphate (RP), and improve plant growth and phosphate (P) uptake by plants grown in soil amended with RP. The results showed that they effectively solubilized RP in Pikovskaya's (PKV) liquid medium and released significantly higher amounts of P into the medium. A. tubingensis solubilized and released 380.8 μg P mL−1, A. niger showed better efficiency and produced 403.8 μg P mL−1. Field experiments with two consecutive crops in alkaline agricultural soil showed that inoculation of these fungi along with RP fertilization significantly increased yield and nutrient uptake of wheat and maize plants compared with control soil. P uptake by wheat and maize plants and the available P increased significantly in the RP-amended soil inoculated with fungi compared with control. These results suggest that the fertilizer value of RP can be increased, especially in alkaline soils, by inoculating P-solubilizing fungi.

Acknowledgements

The authors are thankful to University Grant Commission for financial assistance and TIFAC-CORE for facilities.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.