495
Views
11
CrossRef citations to date
0
Altmetric
Articles

Effect of fertilization history on short-term emission of CO2 and N2O after the application of different N fertilizers – a laboratory study

, , &
Pages 161-171 | Received 19 May 2011, Accepted 26 Aug 2011, Published online: 18 Jan 2012
 

Abstract

Increasing organic carbon (OC) stocks in soils reduce atmospheric CO2, but may also cause enhanced N2O emissions. The objective of this study was to determine whether there are any differences in N2O and CO2 emissions from sandy arable soils with different soil OC and total nitrogen stocks due to the annual application of either farmyard manure (S-FYM) or mineral fertilizer (S-MIN) over 27 years. A laboratory incubation was performed to test the short-term effects of the application of different fertilizers [farmyard manure (FYM), KNO3 (MIN) and biogas waste (BW)] on N2O and CO2 emissions. The CO2 emission rates indicated that OC availability in the soil was higher after BW application than after FYM application. N2O emission for 53 days following fertilizer application amounted to 0.01% (MIN), 0.21% (FYM) and 24% (BW) of the total amount of N applied. The high emissions induced by BW were attributed to the combination of a high availability of OC and ammonium in the fermented waste. Fertilization history, which caused higher soil OC stocks in S-FYM, did not influence N2O emissions. The results suggest that characterization of C and N pools in organic fertilizers is required to assess their impact on N2O emissions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.