253
Views
1
CrossRef citations to date
0
Altmetric
Articles

Numerical study of countermeasure against thermal stimuli for HMX-based polymer-bonded explosives

, , &
Pages 435-453 | Published online: 22 May 2018
 

ABSTRACT

An accurate thermal decomposition model of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)-based polymer-bonded explosives is indispensable to the design of countermeasure against environmental thermal stimuli for certain explosive devices. However, the complicated chemical reactions occurring in decomposition of HMX-based polymer-bonded explosives pose great challenge to scientists. In this study, the thermal ignition kinetic model proposed by Tarver is implemented to study thermal decomposition of HMX-based polymer-bonded explosives using commercial software Abaqus, which does not only consider the thermal decomposition of HMX but also the polymer binders. The simulation results are compared to ODTX and Scaled Thermal Explosion Experiment (STEX) and reasonably good agreements are achieved. Then the thermal decomposition model is applied to analyze an explosive device exposed to environmental thermal stimuli. Furthermore, countermeasure against environmental thermal stimuli is suggested and analyzed quantitatively for the explosive device. The time to explosion and environmental temperature before ignition is calculated and analyzed for the explosive device under various heating rates.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 554.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.