Publication Cover
Drying Technology
An International Journal
Volume 23, 2005 - Issue 9-11
69
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Internal Mass Transfer during Isothermal Drying of a Porous Solid Containing Multicomponent Liquid Mixtures

&
Pages 1939-1951 | Published online: 06 Feb 2007
 

Abstract

Internal mass transfer in a porous solid partially saturated with multicomponent liquids has been experimentally and theoretically studied. Isothermal drying experiments were performed using a jacketed wind tunnel where the transient composition profiles and total liquid content of a cylindrical sample were determined. Sand samples wetted with the ternary liquid mixtures water-methanol-ethanol and 2-propanol-methanol-ethanol were dried at two different initial compositions and temperatures. A mathematical model including mass transfer by capillary movement of the liquid and interactive diffusion in both gas and liquid phase was developed. To simulate the capillary movement of liquid mixtures, parameters experimentally determined for single liquids where weighed according to liquid composition. A fairly good agreement between theoretical and experimental liquid composition profiles was obtained provided that axial dispersion is included in the model.

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial support provided for this work by the Swedish International Development Agency (SAREC/Sida).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.