Publication Cover
Drying Technology
An International Journal
Volume 29, 2011 - Issue 12
459
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Study on Moisture Transfer in Ultrasound-Assisted Convective Drying Process of Sludge

&
Pages 1404-1415 | Published online: 29 Jul 2011
 

Abstract

A coupled heat and moisture transfer model for ultrasound-assisted convective drying process of sludge was established. In this model, the permeable flow caused by acoustic pressure gradient in sludge was considered. The pore structure variety in sludge with ultrasonic irradiation was microscopically studied, and the pore size distribution of sludge was described by fractal geometry. Based on the fractal characterization, the physical properties of sludge including permeability, porosity, and tortuosity factor were determined, and the effective moisture diffusion coefficient of sludge under ultrasonic irradiation was also derived considering the effects of ultrasonic excitation energy and thermal effect on migration rate of water molecule. The effects of ultrasonic energy density and convective air temperature on convective drying process of sludge were numerically analyzed. The results showed that the ultrasonic irradiation changes the pore size distribution in sludge, the sludge flocs are dispersed, and the connectivity of pore structure is improved. Ultrasonic treatment is favorable to accelerating the moisture transport in the convective drying process of sludge, and the ultrasonic influence on moisture transport in sludge intensifies gradually with the increase of acoustic energy density from 0.2 to 0.6 W/ml. Furthermore, it can be also found that the enhancement effect of ultrasound on the average drying rate of sludge is more obvious at the connective air temperature of 65°C than that at 40°C under the uniform acoustic energy density and air velocity of 1.5 m/s.

ACKNOWLEDGMENT

This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20090092110005).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.