Publication Cover
Drying Technology
An International Journal
Volume 32, 2014 - Issue 8
117
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Analysis and Evaluation of Power Formulations for Wood and Hardboard Using Radio Frequency and Microwave Energy

Pages 946-959 | Published online: 14 May 2014
 

Abstract

This article analyzes the influence of frequency, temperature, moisture content, and structural orientation on the applicability of the Beer-Lambert law for various wood species using radio frequency and microwave radiation. To achieve this objective, the study compares the power dissipation computed from Maxwell's equation and Lambert's power law. The wood species considered are white oak (Quercus alba), Douglas fir (Pseudotsuga menziesii), trembling aspen (Populus tremuloides), white birch (Betula paperyfera), yellow birch (Betula alleghaniensis), sugar maple (Acer saccharum), and four commercial hardboards. The dielectric constant and dielectric loss factor are examined as a function of moisture conditions, temperature, frequencies, and the three principal structural orientations. The study involved 3,000 complex dielectric constants. It was found that the radial critical thickness is somewhat smaller than the tangential critical thickness (0.95 times smaller) and the longitudinal critical thickness is significantly smaller than the radial (0.52 times). It was demonstrated that the critical thickness L crit above which the Beer-Lambert law is valid for all of the wood species studied under various conditions obeys the following conditions: log10(L crt) = 0.999 log10−1) + 0.4122, where β−1 is the penetration depth (cm). In the case of microwave radiation, the critical thickness can be estimated from L crt = 2.615 β−1 − 0.0626. Finally, a model is proposed to take into consideration the effect of moisture content with frequency (or with attenuation constant).

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/ldrt.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.