39
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Interaction of an Amphiphilic Peptide with a Phospholipid Bilayer Surface by Molecular Dynamics Simulation Study

&
Pages 937-956 | Received 10 Feb 1995, Published online: 21 May 2012
 

Abstract

Corticotropin-releasing factor (CRF) is the principal neuroregulator of adrenocorticotropic hormone (ACTH) secretion. Previous experiments have demonstrated that CRF binds avidly to the surface of single egg phosphatidylcholine vesicles and its amphiphilic secondary structure might play an important role in the function. In this study, the interaction of the residues 13–41 in human CRF with the surface of a DOPC bilayer was investigated by molecular dynamics (MD) simulation in order to understand the role of the membrane surface in the formation of the amphiphilic α helix as well as to determine the effects of the peptide on the lipid bilayer. The model used included 60 DOPC molecules, 1 helical peptide (CRF13–41) on the bilayer surface, and explicit waters of solvation in the lipid polar head group regions, together with constant-volume periodic boundary conditions in three dimensions. The MD simulation was carried out for 510 ps. In addition, CRF13–41, initially in a helical form, was simulated in vacuo as a control. The results indicate that while it was completely unstable in vacuo, the peptide helical form was generally maintained on the bilayer surface, but with distortions near the terminal ends. The peptide was confined to the bilayer headgroup/water region, similar to that reported from neutron diffraction measurement of tripeptides bound to the phosphatidylcholine bilayer surface (Ref 1). The amphiphilicity of the peptide matched that of the bilayer headgroup environment, with the hydrophilic side oriented toward water and the hydrophobic side making contact with the bilayer hydrocarbon core. These results support the hypothesis that the amphiphilic environment of a membrane surface is important in the induction of peptide amphiphilic α-helical secondary structure. Two major effects of the peptide on the lipids were found: the first CH2 segment in the lipid chains was significantly disordered and the lipid headgroup distribution was broadened towards the water region.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.