233
Views
8
CrossRef citations to date
0
Altmetric
Articles

Preorientation of protein and RNA just before contacting

, , &
Pages 716-728 | Received 15 May 2012, Accepted 27 Jun 2012, Published online: 22 Aug 2012
 

Abstract

Protein and RNA molecules interact and form complexes in many biological processes. However, it is still unclear how they can find the correct docking direction before forming complex. In this paper, we study preorientation of RNA and protein separated at a distance of 5–7 Å just before they form contacts and interact with each other only through pure electrostatic interaction when neglecting the influence of other molecules and complicated environment. Since geometric complementary has no meaning at such a distance, this is not a docking problem and so the conventional docking methods, like FTDock, are inapplicable. However, like the usual docking problem, we need to sample all the positions and orientations of RNA surrounding the protein to find the lowest energy orientations between RNA and protein. Therefore, we propose a long-range electrostatic docking-like method using Fast Fourier Transform-based sampling, LEDock, to study this problem. Our results show that the electrostatically induced orientations between RNA and protein at a distance of 5–7 Å are very different from the random ones and are much closer to those in their native complexes. Meanwhile, electrostatic funnels are found around the RNA-binding sites of the proteins in 62 out of 78 bound protein–RNA complexes. We also tried to use LEDock to find RNA-binding residues and it seems to perform slightly better than BindN Server for 23 unbound protein–RNA complexes.

Acknowledgments

This work is supported by the NSFC under Grant nos. 31100522 and 11174093 and the National High Technology Research and Development Program of China (2012AA020402) and Specialized Research Fund for the Doctoral Program of Higher Education (20110142120038).

Notes

These authors contributed equally to this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.