281
Views
22
CrossRef citations to date
0
Altmetric
Research Articles

GdmCl-induced unfolding studies of human carbonic anhydrase IX: a combined spectroscopic and MD simulation approach

, , , , &
Pages 1295-1306 | Received 17 Mar 2016, Accepted 13 Apr 2016, Published online: 20 May 2016
 

Abstract

Carbonic anhydrase IX (CAIX) is a transmembrane glycoprotein, associated with tumor, acidification which leads to the cancer, and is considered as a potential biomarker for hypoxia-induced cancers. The overexpression of CAIX is linked with hypoxia condition which is mediated by the transcription of hypoxia-induced factor (HIF-1). To understand the biophysical properties of CAIX, we have carried out a reversible isothermal denaturation of CAIX-induced by GdmCl at pH 8.0 and 25°C. Three different spectroscopic probes, the far-UV CD at 222 nm ([θ]222), Trp fluorescence emission at 342 nm (F342) and difference molar absorption coefficient at 287 nm (Δε287) were used to estimate stability parameters, (Gibbs free energy change in the absence of GdmCl; Cm (midpoint of the denaturation curve), i.e. molar GdmCl concentration ([GdmCl]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[GdmCl])). GdmCl induces a reversible denaturation of CAIX. Coincidence of the normalized transition curves of all optical properties suggests that unfolding/refolding of CAIX is a two-state process. We further performed molecular dynamics simulation of CAIX for 40 ns to see the dynamics of protein structure in different GdmCl concentrations. An excellent agreement was observed between in silico and in vitro studies.

Acknowledgements

DI, AP and MAH are thankful to University Grants Commission (UGC), New Delhi, India, for their fellowship. Authors sincerely thank Jamia Millia Islamia for providing high speed server in the Central Instrumentation Facility. Harvard University-plasmid facility is acknowledged providing the CAIX gene. We thank Department of Science and Technology, India for FIST support (SR/FST/LSI-541/2012).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.