421
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Graphene oxide-methylene blue nanocomposite in photodynamic therapy of human breast cancer

, &
Pages 2216-2223 | Received 13 May 2017, Accepted 19 Jun 2017, Published online: 06 Jul 2017
 

Abstract

The interaction of methylene blue (MB) as a photosensitizer with graphene oxide nano-sheets (GO) was examined in aqueous solution using UV-vis spectrophotometric techniques. MB–GO composites were prepared by mixing the solutions of GO nano-sheets and methylene blue due to interacting of the cationic methylene blue photosensitizer via electrostatic and π–π stacking or hydrophobic cooperative interactions. The cell killing potential of nanocomposite was examined on the MDA-MB-231 breast cancer cells in the absence and presence of red LED irradiation. The results demonstrated that the MB-GO nanocomposite has good performance in photodynamic therapy (PDT) during red LED irradiation. The cytotoxicity of nanocomposite caused reducing cell viability up to 20%. These effects would be due to the nano size structure of composite that could lead to effective cellular penetration. Also the significant difference has seen in lower concentrations of MB and MB-GO nanocomposite. The results show more than 40% increases in cell killing potential in lower concentrations of nanocomposite by using 2.5 μg/mL of each compound. The ratio of GO/MB can affect the interaction and higher ratios of graphene oxide (GO/MB > 1) can induce dimerization of MB. In lower concentrations and ratios of (GO/MB < 1) the free MB concentration increases and the electron shuttling effect of GO in photo activity decreases – which could affect the photocatalytic yield in PDT. The cell viability measurements confirm these effects on cancer cell killing potential of nanocomposite. According to microscopic and PDT assay results, the nanocomposite distribution and diffusion in cells enhanced the photochemical reaction yield in photodynamic therapy of MDA-MB-231 breast cancer cell line.

Acknowledgments

The support of Medical Laser Research Center of Academic Center for Education, Culture and Research, Tehran University of Medical Sciences branch and Nano-electronic laboratory, Faculty of engineering, University of Tehran, is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.