361
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Screening for the selective inhibitors of MMP-9 from natural products based on pharmacophore modeling and molecular docking in combination with bioassay experiment, hybrid QM/MM calculation, and MD simulation

, , , , , & show all
Pages 3135-3149 | Received 23 Jun 2018, Accepted 31 Jul 2018, Published online: 18 Sep 2018
 

Abstract

Matrix metalloproteinase-9 (MMP-9) has been considered as an attractive target involving cancer therapy. In this study, the 3D QSAR pharmacophore model of MMP-9 inhibitors is built, and its reliability is subsequently validated based on different methods. The built pharmacophore model consists of the four chemical features, including two hydrogen bond acceptors (HBA), one hydrophobic (HY), and one ring aromatic (RA). Among them, both HY and RA are found to be especially important features because they involve the interactions of inhibitors with the S1′ pocket of MMP-9, which determines the selectivity of MMP-9 inhibitors. By combining pharmacophore model with molecular docking, the virtual screening is carried out to identify the selective MMP-9 inhibitors from natural products. The four potential selective MMP-9 inhibitors of natural products are found. One of them was used to carry out the bioassay experiment inhibiting MMP-9, and the estimated IC50 value of only 26.94 µM clearly shows its strongly inhibitory activity; besides, both the hybrid quantum mechanics/molecular mechanics (QM/MM) calculation and the molecular dynamics simulation are performed to examine the reliability regarding the binding mode of this inhibitor with MMP-9 active sites predicted by molecular docking. All the screened four natural products are found to well bind with the MMP-9 active sites by different kinds of interactions. Finally, the ADMET properties of screened four natural products are assessed. These screened MMP-9 inhibitors of natural products could be used as the lead compounds to perform structural modifications and optimizations in the future work.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by National Found for Fostering Talents of Basic Science (NFFTBS); College Students Innovation Project for the R&D of Novel Drugs [grant number J1310032].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.