423
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Molecular mechanism of acetoacetyl-CoA enhanced kinetics for increased bioplastic production from Cupriavidus necator 428

, &
Pages 827-840 | Received 24 Oct 2018, Accepted 27 Feb 2019, Published online: 19 Mar 2019
 

Abstract

Polyhydroxyalkanoates are gaining importance due to their biodegradable nature and close analogy to plastics. Polyhydroxybutyrate (PHB) is the most widely used bioplastic from polyalkanoate family, which is produced by a legion of bacterial species via phbCAB operon encoding β-ketothiolase (PhaA), NADPH-dependent acetoacetyl-coenzyme A (acetoacetyl-CoA) reductase (PhaB) and polyhydroxyalkanoate synthase (PhaC). Augmentation in the activity of these enzymes is promising for increased PHB production which is achieved by enzyme engineering strategies including non-structural and structural approaches. Our study is deployed on directed evolution-based experimentally reported mutants of PhaB enzyme with increased efficiency due to impact on critical structural factors. We have analyzed and compared the native PhaB with two of its variants Q47L and T173S in complex with their cofactor i.e. NADPH as well as the substrate i.e. acetoacetyl-CoA, via long range molecular dynamics simulations. Interaction profile, MMPBSA, essential dynamics, and free energy landscape analysis revealed that the enzyme efficiency is critically affected by cofactor interactions. It was also observed that mutants have higher equilibrium constant with lesser but optimal affinity for substrate and cofactor than the wild type, which might be the reason for increased efficiency of the mutants via enhanced substrate and cofactor exchange rate. Our study provides insights into the cofactor and substrate binding affinities to PhaB enzyme at atomistic level, which will facilitate designing of highly efficient PhaB enzymes for increased PHB production.

Communicated by Ramaswamy H. Sarma

Acknowledgements

Authors are thankful to Jawaharlal Nehru University for usage of all computational facilities. A.G. is grateful to University Grants Commission, India, for the Faculty Recharge position. A.S. also acknowledges academic support from TERI School of Advanced Studies.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

A.S. is thankful to Department of Health Research (DHR) for Young Scientist fellowship.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.