357
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Cytotoxic activity, molecular docking, pharmacokinetic properties and quantum mechanics calculations of the brown macroalga Cystoseira trinodis compounds

, , , , ORCID Icon &
Pages 3855-3873 | Received 19 Mar 2020, Accepted 15 May 2020, Published online: 11 Jun 2020
 

Abstract

In this study, nine compounds were isolated, eight of them were isolated for the first time from Cystoseira trinodis. The biological activity of the extract, fractions and pure compounds was evaluated. The antimicrobial activity was investigated against 3 fungi species, 3 gram + ve and 3 gram –ve bacteria. The crude extract and fractions showed moderate inhibition against some of the tested microorganisms, especially the butanol fraction exhibited the maximum inhibition zone against Salmonella typhimurium (16 ± 0.60 mm). Cytotoxicity was evaluated against HepG-2 and MCF-7 cell lines. Hexane fraction exhibited the highest cytotoxic effect against HepG-2 and MCF-7 cell lines with an IC50 value of 14.3 ± 0.8 and 19.2 ± 0.7 µg/ml, respectively with compared to other fractions. The isolates were identified as octacosanoic acid (1), glyceryl trilinoleate (2), oleic acid (3), and the epimeric mixture of saringosterols (4, 5), β-sitosterol (6), glycoglycerolipid (7) and a mixture of kjellmanianone and loliolide (8, 9) by spectroscopic analysis. Among the all tested compounds kjellmanianone and loliolide mixture exhibited significant cytotoxic activity with an IC50 value of 7.27 µg/ml against HepG-2 cells. The major and minor constituents of the extract and fractions were identified using GC-MS analysis. Molecular docking analysis confirmed that most of the studied compounds especially compounds 8 and 9 strongly interact with TPK and VEGFR-2 with highest binding energies supported that the high cytotoxicity of these compounds against human hepatocellular cancer in the experimental part. The energetic, geometric and topological properties of compounds 8 and 9 binding with cytosine base were computed by DFT methods. Molecular properties descriptors, bioactivity score and ADMET analysis confirmed that most of the studied compounds especially compounds 8 and 9 exhibit significant biological activities and have a better chance to be developed as drug leads.

Communicated by Ramaswamy H. Sarma

Aknowledgement

The authors thank Prof. Dr. Sayed Abdel Hamid Eltomy professor of natural products Chemistry, National Center of Researches, Cairo, Egypte, for his assistance in the isolation and identification of the pure compounds.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.