190
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Virtual discovery of a hetero-cyclic compound from the Universal Natural Product Database (UNPD36) as a potential inhibitor of interleukin-33: molecular docking and dynamic simulations

, , & ORCID Icon
Pages 8696-8705 | Received 11 Nov 2020, Accepted 06 Apr 2021, Published online: 24 Apr 2021
 

Abstract

Interleukin (IL)-33 is a cytokine implicated in several inflammatory and autoimmune diseases. Upon binding to its receptor ST2, IL-33 activates allergic inflammatory responses. To block this protein-protein interaction with a potential anti-allergic agent, we screened Universal Natural Product Database (UNPD) using a combined approach of molecular docking and dynamic simulations. Six hundred compounds with high gastrointestinal absorption properties from the UNPD were retrieved and subjected to molecular docking using Autodock Vina, out of which four hetero-cyclic compounds (UNPD36, UNPD2045, UNPD8905, UNPD122514) were found to have binding energy score of < −7.0 Kcal/mol. Further analysis from 100 ns MD simulation of the best hit (UNPD36) revealed that IL-33_UNPD36 complex reached average stability at RMSD of 2.7 Å, and residues involved in the interaction showed lower fluctuations compared to the residues at the β4–β5 and β11–β12 loop region. Further molecular docking using Autodock 4.2 was carried out to determine the binding orientation of UNPD36. Using GROMACS, additional 50 ns MD simulations and MM-PBSA calculation were performed on this complex. Finally, chemoinformatic studies revealed that the UNPD36 had drug-like and pharmacokinetic profiles as well as potentials for oral and topical applications, in addition to good safety profile. Thus, it was concluded that a hetero-cyclic compound with chromone moiety (UNPD36) had a good and stable binding mode to serve as potential inhibitor of IL-33 and/or may provide a scaffold for further optimization toward the design of more potent inhibitors for application in the treatment of respiratory allergies.

Communicated by Ramaswamy H. Sarma

Acknowledgements

We appreciate the support of Ohio Supercomputer Center for the academic purchase of their facility for molecular dynamics and simulation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.