110
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Probing the interaction of fisetin with human serum transferrin via spectroscopic and molecular docking approaches

, &
Pages 9613-9619 | Received 13 Apr 2021, Accepted 15 May 2021, Published online: 07 Jun 2021
 

Abstract

The binding of fisetin to human serum transferrin (HST) was investigated by spectroscopic (steady-state fluorescence, synchronous fluorescence, Förster resonance energy transfer) and molecular docking approaches. HST fluorescence is quenched by fisetin by a static process. The binding takes place with a moderate affinity and it is driven by hydrogen bonding and van der Waals forces. Synchronous fluorescence study indicates that Trp is more involved in the fluorescent quenching of HST by fisetin than Tyr. The energy transfer between HST and fisetin occurs at a distance of 2.31 nm confirming the results obtained by fluorescence. The binding of fisetin to HST favors thermal denaturation of HST conformation. The transition temperature for HST was obtained at 53.81 °C while the presence of the fisetin led to its change to 49.06 °C. The molecular docking of fisetin to HST confirms the results obtained by the spectroscopic experiments showing a moderate affinity of fisetin for HST.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.