240
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico prediction of the possible antidiabetic and anti-inflammatory targets of Nymphaea lotus-derived phytochemicals and mechanistic insights by molecular dynamics simulations

, ORCID Icon &
Pages 12225-12241 | Received 03 Nov 2022, Accepted 01 Jan 2023, Published online: 16 Jan 2023
 

Abstract

Nymphaea lotus is used traditionally for the treatment of diabetes and its complications. However, the mode of action and the likely bioactive phytochemicals involved are not yet fully explored. GC-MS analysis was employed to identify the inherent compounds in N. lotus leaves. To gain an insight into the antidiabetic mode of action of this plant, the identified phytochemicals were subjected to computational studies against four molecular targets of diabetes, dipeptidyl peptidase-4, glycogen synthase kinase 3, NADPH oxidase (NOX), sodium-glucose co-transporter-2, and one target of inflammation, cyclooxygenase-2. Compounds with notable binding affinity were subjected to druggability test. Results from molecular docking showed that seven of the compounds investigated exhibited druggability properties and had outstanding binding affinity values for these targets relative to values obtained for the respective standards of each of the targets. Analysis of the MD trajectories from a 100 ns atomistic run shows that the integrities of the complex systems were more stable and preserved throughout the simulation than the unbound protein. These results indicated that the antidiabetic and anti-inflammatory effects of these compounds might be via the inhibition of these targets, laying the foundation for further studies, such as in vitro and in vivo studies to fully validate the anti-diabetic agents from this plant.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.