160
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational-based drug design of novel small molecules targeting p53-MDMX interaction

, , , , , , , , , , , , , , & show all
Received 13 May 2023, Accepted 06 Jul 2023, Published online: 14 Aug 2023
 

Abstract

The regulation of the p53 tumor suppressor pathway is critically dependent on the activity of Murine Double Minute 2 (MDM2) and Murine Double Minute X (MDMX) proteins. In certain types of cancer cells, excessive amount of MDMX can poly-ubiquitinate p53, which can result in its degradation, leading to a subsequent reduction in the levels of this protein. Therefore, the design of small-molecule inhibitors targeting the MDMX-p53 interaction has emerged as a promising strategy for cancer therapy. In this study, we employed computational techniques including pharmacophore modeling and molecular docking to identify three potential small molecule inhibitors (CID_25094615, CID_137634453, and CID_25094344) of the MDMX-p53 interaction from a PubChem database. Molecular dynamics of 100000 ps were conducted to assess the stability of the MDMX-inhibitor complexes. Our results showed that all three compounds exhibit stable binding with MDMX, with significantly lower root mean square deviation (RMSD) and fluctuation (RMSF) values than the control ligand, indicating superior stability. Additionally, the three compounds exhibit stronger intermolecular hydrogen bond (HBOND) interactions compared to the control, suggesting stronger stability. Overall, our findings highlight the potential of these compounds as lead candidates for the development of novel anticancer agents that target the MDMX-p53 interaction.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.