412
Views
34
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Improved design of kernel distance–based charts using support vector methods

&
Pages 464-476 | Received 01 Sep 2009, Accepted 01 Apr 2012, Published online: 07 Jan 2013
 

Abstract

Statistical Process Control (SPC) techniques that originated in manufacturing have also been used to monitoring the quality of various service processes, which can be characterized by one or several variables. In the literature, these variables are usually assumed to be either continuous or categorical. However, in reality, the quality characteristics of a service process may include both continuous and categorical variables (i.e., mixed-type variables). Direct application of conventional SPC techniques to monitor such mixed-type variables may cause increased false alarm rates and misleading conclusions. One promising solution is the kernel distance–based chart (K-chart), which makes use of Support Vector Machine (SVM) methods and requires no assumption on the variable distribution. This article provides an improved design of the SVM-based K-chart. A systematic approach to parameter selection for the considered charts is provided. An illustration and comparison are presented based on a real example from a logistics firm. The results confirm the improved performance obtained by using the proposed design scheme.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 202.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.