Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 23, 2006 - Issue 6
166
Views
18
CrossRef citations to date
0
Altmetric
Original

Predicting the Timing and Duration of Sleep in an Operational Setting Using Social Factors

, , , &
Pages 1265-1276 | Published online: 07 Jul 2009
 

Abstract

In recent years, there has been increasing interest in the use of bio‐mathematical models to predict alertness, performance, and/or fatigue in operational settings. Current models use only biological factors to make their estimations, which can be limited in operational settings where social and geo‐physical factors also dictate when sleep occurs. The interaction between social and biological factors that help determine the timing and duration of sleep during layover periods have been investigated in order to create and initially validate a mathematical model that may better predict sleep in the field. Participants were 32 male transmeridian airline pilots (17 captains, 10 first officers, and 5 second officers) flying the Sydney‐Bangkok‐London‐Singapore‐Sydney (SYD‐LHR) pattern. Participants continued their regular schedule while wearing activity monitors and completing sleep and work diaries. The theoretical sleep timing model underpinning this analysis consists of separate formulations for short (<32 h) and long (>32 h) break periods. Longer break periods are split into three distinct phases—recovery (break start until first local night), personal (first local night until last local night), and preparation phases (last local night until break end)—in order to exploit potential differences specific to each. Furthermore, an iterative procedure combining prediction and retrodiction (i.e., using future duty timing information to predict current sleep timing) was developed to optimize predictive ability. Analysis found an interaction between the social and circadian sleep pressures that changed over the break period. Correlation analysis indicated a strong relationship between the actual sleep and new model's predictions (r=0.7–0.9), a significant improvement when compared to existing models (r=0.1–0.4). Social and circadian pressures play important roles in regulating sleep for international flight crews. An initial model has been developed in order to regulate sleep in these crews. The initial results have shown promise when applied to small sets of data; however, more rigorous validation must be carried out.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 489.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.