Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 64, 2017 - Issue 3
733
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Experiments of methane gas solubility in formation water under high temperature and high pressure and their geological significance

&
Pages 335-342 | Received 04 Nov 2015, Accepted 08 Feb 2017, Published online: 07 Mar 2017
 

ABSTRACT

The solubility of methane in formation water and water content in the coexisting gas phase were measured under the conditions of high temperature and high pressure, using an ultra-high-pressure fluid PVT system, where the experimental temperature reached up to 453 K and pressure reached up to 130 MPa. Experimental results show the following (1) The two phases of gas and liquid still exhibit an obvious interphase interface even under high temperatures and pressures. (2) When temperatures exceed 353 K, the solubility of methane in formation water increases as the temperature and pressure rise. The growth rate of solubility is faster under a relatively low temperature and pressure, and slower at a relatively high temperature and pressure, but the solubility will not increase without limit. In this experiment, the solubility of methane in formation water reached its peak when the temperature was at 453 K and the pressure at 130 MPa. (3) Water content in the coexisting gas phase increases as temperature rises, with a smaller increase at relatively low temperatures and a much greater increase at relatively high temperatures but decreases with the increasing pressure, more rapidly under low pressure and more slowly under high pressure. The solubility of methane in formation water and the water content in the coexisting gas phase are controlled by both temperature and pressure, but using classic calculation models, these two parameters under high temperatures and pressures are inconsistent with our experimental data. Therefore, the study is significant and highlights other possible effects on solubility and condensate water content. Additionally, an example from the Yinggehai Basin in the South China Sea, where the temperature and the pressure are high, demonstrates the influence of solubility and phase behaviour on natural gas migration, its formation and the distribution of gas reservoirs.

Acknowledgements

The research was financially supported by the National Science and Technology Major Project of China (No. 2011ZX05023-004-008). The authors thank CNOOC Limited, Zhanjiang Branch, for providing valuable geological data.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 487.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.