131
Views
6
CrossRef citations to date
0
Altmetric
feature articles

Normalization of Various Phase Functions for Radiative Heat Transfer Analysis in a Solar Absorber Tube

&
Pages 791-801 | Published online: 25 Nov 2013
 

Abstract

Normalization of various phase functions is considered for accurately predicting radiative heat transfer. A solar absorber tube filled with anisotropic scattering working medium is used as an example. Analysis of a previous normalization technique shows that while it does conserve scattered energy exactly after discrete-ordinates method (DOM) discretization, the overall asymmetry factor of the phase function is distorted, leading to substantial changes in overall scattering effect. A new normalization technique that conserves asymmetry factor and scattered energy simultaneously is investigated. The impact of lack of asymmetry factor conservation is analyzed for both the Legendre polynomial and the Henyey–Greenstein phase function approximations. Variations of medium optical thickness, scattering albedo, asymmetry factor, and side-wall emissivity are scrutinized to determine the effects of said parameters on wall heat flux and energy absorbing rate inside the absorber tube. Side-wall heat flux is found to increase with increases in asymmetry factor, optical thickness, and wall emissivity, and with decreases in scattering albedo. Energy absorbing rate profiles are found to depend greatly on optical thickness and scattering albedo.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.