Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 26, 2010 - Issue 3
475
Views
63
CrossRef citations to date
0
Altmetric
Original Articles

Isolated thallus-associated compounds from the macroalga Fucus vesiculosus mediate bacterial surface colonization in the field similar to that on the natural alga

, &
Pages 247-255 | Received 21 Aug 2009, Accepted 09 Nov 2009, Published online: 04 Jan 2010
 

Abstract

This study investigated whether surface-associated compounds isolated from the macroalga Fucus vesiculosus had the potential to mediate microbial and/or macrobial epibiosis similar to that on the natural alga. To selectively yield thallus-associated compounds and avoid contamination by intracellular algal compounds, cell lysis was monitored by surface microscopy of algal cells and chemical profiling of algal surface extracts by coupled gas chromatography mass spectroscopy. The optimized extraction resulted in polar and non-polar algal surface extracts. The non-polar surface extract was immobilized in hydrogel, the polar surface extract was homogeneously perfused through the gel to ensure a temporally constant delivery of polar extract components. During a 7 day field trial, bacterial biofilms were formed on control gels and gels featuring polar and/or non-polar extract components. PERMANOVA revealed that bacterial community profiles on controls and on gels featuring polar or non-polar extract were significantly different from the profile on F. vesiculosus, while the profile on the gels bearing both polar and non-polar extracts was not. Moreover, the polar surface extracts inhibited the settlement of barnacle cyprids. Considering the pronounced effects of bacterial biofilms on invertebrate larval settlement, these results suggest that algal surface chemistry affects macrofouling not only directly but also indirectly, via its control of biofilm formation and composition.

Acknowledgements

The technical workshop at the University of Oldenburg is acknowledged for the support and manufacture of the perfusion apparatus.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 939.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.