Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 32, 2016 - Issue 7
795
Views
15
CrossRef citations to date
0
Altmetric
Articles

Deacylated lipopolysaccharides inhibit biofilm formation by Gram-negative bacteria

, , , &
Pages 711-723 | Received 02 Feb 2016, Accepted 18 May 2016, Published online: 13 Jun 2016
 

Abstract

The extracellular polysaccharides of Vibrio vulnificus play different roles during biofilm development. Among them, the effect of lipopolysaccharide (LPS), which is crucial for bacterial adherence to surfaces during the initial stage of biofilm formation, on the formation process was examined using various types of LPS extracts. Exogenously added LPS strongly inhibited biofilm formation in a dose-dependent manner. In addition, the exogenous addition of a deacylated form of LPS (dLPS) also inhibited biofilm formation. However, an LPS fraction extracted from a mutant not able to produce O-antigen polysaccharides (O-Ag) did not have an inhibitory effect. Furthermore, biofilm formation by several Gram-negative bacteria was inhibited by dLPS addition. In contrast, biofilm formation by Gram-positive bacteria was not influenced by dLPS but was affected by lipoteichoic acid. Therefore, this study demonstrates that O-Ag in LPS is important for inhibiting biofilm formation and may serve an efficient anti-biofilm agent specific for Gram-negative bacteria.

Acknowledgements

The authors thank Dr H.-S. Kim for initial investigation of this project and Prof. S.-J. Park for comments on this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 939.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.