Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 6
227
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Application of zinc oxide and sodium alginate for biofouling mitigation in a membrane bioreactor treating urban wastewater

, ORCID Icon &
Pages 660-678 | Received 10 Oct 2019, Accepted 14 Jul 2020, Published online: 04 Aug 2020
 

Abstract

This research aimed to mitigate fouling in membrane bioreactors (MBR) through concurrent usage of zinc oxide as an antibacterial agent (A) and sodium alginate as a hydrophilic agent (H) within a polyacrylonitrile membrane (PM) structure. The antibacterial polymeric membranes (APM) and antibacterial hydrophilic polymeric membranes (AHPM) synthesized showed a higher porosity, mechanical strength and bacterial inhibition zone, and a lower contact angle in comparison with PM membranes. EDS, SEM and AFM analyses were used to characterize the chemical, structural, and morphological properties of PM, APM, and AHPM. The flux of PM, APM, and AHPM in MBR was 37, 48, and 51 l m−2 h−1 and COD removal was 81, 93.5, and 96.7%, respectively. After MBR operation for 35 days in an urban wastewater treatment, only 50% of the flux of PM was recovered, while the antibacterial and hydrophilic agents yielded a flux recovery of 72.7 and 100% for APM and AHPM, respectively.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 939.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.