195
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Modelling of the mechanical and mass transport properties of auxetic molecular sieves: an idealised organic (polymeric honeycomb) host–guest system

, , , , &
Pages 897-905 | Received 01 Aug 2005, Accepted 01 Sep 2005, Published online: 22 Nov 2006
 

Abstract

Force field-based simulations have been employed to model the mechanical properties of a range of undeformed molecular polymeric honeycombs having conventional and re-entrant hexagon pores. The conventional and re-entrant hexagon honeycombs are predicted to display positive and negative in-plane Poisson's ratios, respectively, confirming previous simulations. The structure, and mechanical and mass transport properties of a layered re-entrant honeycomb ((2,8)-reflexyne) were studied in detail for a uniaxial load applied along the x 2 direction. The mechanical properties are predicted to be stress- (strain-) dependent and the trends can be interpreted using analytical expressions from honeycomb theory. Transformation from negative to positive Poisson's ratio behaviour is predicted at an applied stress of σ2 = 2 GPa. Simulations of the loading of C60 and C70 guest molecules into the deformed layered (2,8)-reflexyne host framework demonstrate the potential for tunable size selectivity within the host framework. The entrapment and release of guest molecules is attributed to changes in the size and shape of the pores in this host–guest system.

Acknowledgements

The authors are grateful to the UK's Engineering and Physical Sciences Research Council for funding this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.