79
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Molecular simulation of the thermophysical properties of fluids: phase behaviour and transport properties

Pages 185-189 | Received 01 Nov 2005, Accepted 01 Jan 2006, Published online: 31 Jan 2007
 

Abstract

Historically, reliable data for the thermophysical properties of fluids could only be obtained from accurate experimental measurement. The input from theory was, at best, limited to a supporting role by providing correlations. The large number of assumptions and approximations involved in theoretical tools such as equations of state meant that it was unrealistic to expect genuinely reliable predictions. More recently, the advent of powerful molecular simulation techniques has greatly enhanced the usefulness of thermophysical calculations, particularly in chemical engineering. Unlike conventional calculations, molecular simulation determines the properties of a fluid directly by evolving molecular coordinates in accordance with a rigorous calculation of intermolecular energies or forces. In this work, the application of molecular simulation to the prediction of the thermophysical properties of fluids relevant to chemical engineering applications is examined. In particular, the role of three-body interactions on the vapour-liquid coexistence of fluids is illustrated and compared with experimental data. Molecular simulation is also used to compare the viscosities of dendrimer fluids with linear polymers of equivalent molecular weight.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.