61
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Ligand recognition by chloroperoxidase using molecular interaction fields and quantum chemistry calculations

, , &
Pages 649-654 | Received 01 Dec 2006, Accepted 01 Mar 2007, Published online: 15 Aug 2007
 

Abstract

We recently reported that chloroperoxidase (CPO) from Caldariomyces fumago showed atypical kinetic behavior for the oxidation of 4,6 dimethyl dibenzothiophene (DMDBT). In this work, we undertake the theoretical study of DMDBT docking into CPO's active site, in order to clarify its binding capacity and affinity using molecular interaction fields and quantum mechanical procedure. The results revealed that CPO has two substrate binding sites with similar affinities for DMDBT. This finding suggests that the atypical kinetic behavior of CPO for the oxidation of DMDBT might be due to the simultaneous binding of two DMDBT molecules during its reaction cycle. Finally, we extend these results to carbazole, a nitrogen-containing PAH, through experimental and theoretical studies.

Acknowledgements

This work was supported by grants from the Mexican Petroleum Institute (D.000344 and D.000293), CONACYT and COFAA-SIP/IPN. We acknowledge Dr Marcela Ayala from IBT (UNAM) for fruitful discussions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.