339
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Indigo stability: an ab initio study

, , , &
Pages 1085-1090 | Received 26 Jan 2011, Accepted 30 Mar 2011, Published online: 12 Aug 2011
 

Abstract

This work shows that indigo's high stability can be attributed both to the large π conjugation inside the molecule and to intra- and intermolecular hydrogen bonds. The theoretical investigation of indigo's electronic structure has been performed using high-level methods. To understand the interactions in solid state, calculations of the dimer system with both molecules in the same plane was carried out. In the monomer, two intramolecular hydrogen bridges between amino and carbonyl groups occupy positions that would otherwise be the most reactive ones for nucleophilic and electrophilic attacks. In the dimer, amino and carbonyl groups on different monomers form intermolecular multicentred non-linear hydrogen bonds in six-member rings, protecting again the same reactive centres and explaining the limited solubility of indigo. The addition of the free radical OH breaks the central C = C double bond, the conjugation and the hydrogen bridges as a first step. The Gibbs energy calculation favours the addition of OH radical over C1.

Acknowledgements

We thank the Centro de Supercomputo at the UAM-I for the facilities on calculations with Aitzaloa Cluster.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.