198
Views
4
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics study on the stability of wild-type and the R220K mutant of human prion protein

, , , &
Pages 504-513 | Received 26 Feb 2013, Accepted 05 Jul 2013, Published online: 09 Aug 2013
 

Abstract

Prion diseases are invariably fatal and highly infectious neurodegenerative diseases related to the structure transition of α-helix into β-sheet. In order to gain more direct insight into the molecular basis of the disease, the stability of the wild-type human prion protein (hPrPc) and the R220K mutant (m-hPrPc) was studied by molecular dynamics (MD) and flow MD simulation. Both the thermodynamic stability and the mechanical properties of hPrPc were investigated in this work. It was found that β-sheet was more readily to be unfolded in m-hPrPc. In the case of hPrPc, less content of helix was preserved after water turbulence. The H-bond network formed by the mutation-related residue 220 was found to play a key role in the stability of hPrPc.

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21003037).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.