147
Views
3
CrossRef citations to date
0
Altmetric
Proceedings of the 3rd International Conference on Molecular Simulation

Learning chemistry with multiple first-principles simulations

, &
Pages 780-787 | Received 06 Feb 2014, Accepted 18 May 2014, Published online: 07 Jul 2014
 

Abstract

Huge parallel high-performance computing (HPC) architectures are today available laboratories for modelling atomic forces with high accuracy and for large samples of atoms. Modern statistical tools allow to simulate the statistics of these samples, while first-principles molecular dynamics (MD) can probe the interactions within large atomic samples, including possible chemical reactions. But a proper statistical convergence for the ensemble, represented in terms of a bundle of trajectories, is still unsatisfactory in terms of comparisons with experiments. Can we learn something by these HPC experiments? In this contribution, we show one example, where the occurrence of a chemical reaction in a disordered system is probed. The complex of the copper ion and a segment of the amyloid-β peptide, of wide interest in understanding the progress of Alzheimer's disease, was modelled combining constructions based on empirical force fields with first-principles MD simulations. We simulate a bundle of 16 different structures, biasing different Cu coordination numbers and changing the charge (oxidation state) of the assembly. Even within the given approximations for forces and the poor sampling, we could identify the structures of the complex that are able to react with hydrogen peroxide. The observation explains, at a molecular level, one important linkage between Alzheimer's disease and oxidative stress. This is an example of a general strategy for exploiting reactive configurations within a large set of possible reasonable candidates.

Acknowledgements

The PRACE project pra063, the CALMIP (Calcul en Midi-Pyrénées) project P1049 and the bilateral CNR/CNRS exchange program ‘Identification of active redox pathways for copper ions bonded to amyloid peptides’ are greatly acknowledged for computational resources and funding provided.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.