260
Views
3
CrossRef citations to date
0
Altmetric
Article

Tuning the electronic and photophysical properties of platinum(II) complexes through ancillary ligand modification: a theoretical study

, , , &
Pages 1035-1041 | Received 13 Dec 2015, Accepted 12 Mar 2016, Published online: 25 May 2016
 

Abstract

In this work, six Pt(II) complexes have been studied via density functional theory (DFT)/time-dependent DFT caculations to explore the influence of different ancillary ligand on electron structures, photophysical properties and radiative decay processes. Moreover, the self-consistent spin–orbit coupling TDDFT was used to calculate zero-field splitting, radiative rate and radiative lifetime to unveil the radiative deactivation processes for these complexes. The results indicated that [Pt(ppy)(ppz)] (ppy = 2-phenylpyridine and ppz = 5-(2-pyridyl)-pyrazole) has a higher radiative decay rate constant and a smaller nonradiative decayrate constant than that of [Pt(ppy)(acac)] (acac = acetylacetonate). Furthermore, complex 5, with dimesityboron added on the 3′-position of the pyrazole ring in [Pt(ppy)(ppz)], shows great potential to serve as an efficient blue-green light emitter in OLED.

Graphical abstract

Better phosphorescent properties can be obtained from proper alteration or modification of the ancillary ligand in cyclometalated platinum complexes.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.