439
Views
7
CrossRef citations to date
0
Altmetric
Articles

Modelling and simulation of DNA-mediated self-assembly for superlattice design

, &
Pages 1203-1210 | Received 17 Jan 2019, Accepted 20 Apr 2019, Published online: 02 May 2019
 

ABSTRACT

Functionalisation of colloidal particles with DNA provides a powerful and flexible path towards self-assembly of ordered materials. Given the nearly limitless possibilities for constructing DNA-functionalised particles, and the wide range of conditions under which they can be assembled, it is crucial to gain an understanding of the principles governing self-assembly of these particles and how their properties affect the structures produced. A number of computational models for DNA-functionalised systems have successfully described their properties, and molecular simulation techniques have provided a unique insight into the factors underlying their assembly. Here, we discuss a variety of efforts using simulations to solve an important design problem in DNA-mediated assembly: how the properties of individual DNA-functionalised particles affect their interactions with each other, and ultimately how these interactions determine what structures can be produced.

Disclosure statement

There are no conflicts of interest to declare.

Additional information

Funding

Our work mentioned in this review was supported by the US Department of Energy, Office of Science, Basic Energy Sciences Award DE-SC00013979. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported under Contract No. DE-AC02-05CH11231. Use of the high-performance computing capabilities of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation, project no. TG-MCB120014, is also gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.